
A MULTISCALE MODEL FOR THE EFFECTIVE THERMAL

CONDUCTIVITY TENSOR OF A STRATIFIED COMPOSITE MATERIAL1

J.M. Goyheneche2,3, A. Cosculluela2

1 Paper presented at the Fifteenth Symposium on Thermophysical Properties, June

22-27, 2003, Boulder, Colorado, U.S.A.

2 Laboratoire des Composites Thermostructuraux, UMR 5801 : CNRS-Snecma-CEA-

UB1, Domaine Universitaire de Bordeaux, 3 allée de la Boétie, 33600 Pessac, France.

3 To whom correspondence should be addressed. E-mail : goyhenec@lcts.u-bordeaux.fr.



ABSTRACT

The thermal modelling of composites has three essential objectives : (i) the

comprehension of their thermal behaviour ; (ii) the composite scaling in order to satisfy

specific requirements ; (iii) the optimal analysis of experimental results from thermal

characterisation. For a complete study of the material, each of these three points must be

taken into account at the fibre scale (≈ 10 µm), the yarn scale (≈ 1 mm), and the

composite scale (≈ 10 cm). This work presents a multi-scale modelling of the effective

thermal conductivity tensor of a stratified composite material. The longitudinal and

transverse thermal conductivities of the yarn are computed from optical microscopic

imaging of the material. The isotropic thermal conductivity of the loaded matrix is

computed by the Bruggeman model. Then, the thermal conductivity tensor is performed

by a finite element method taking into account the morphology of the fabric. Computed

values are close to experimental values measured by classical methods. Finally,

analytical relations are proposed to obtain an efficient model which can be used in a

multi-phenomena simulation of the composite structure.
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specific heat.



1. INTRODUCTION

Woven-fabric/polymer matrix composites have been extensively studied because of the

relative ease and the low cost of their manufacturing. Many industrial issues are due to

their very good specific mechanical properties. However, for the thermal protection

applications, charring ablators are the most widely used. Are generally used phenolic,

epoxy or silicon resins with glass or carbon fibres. In this case, the thermal properties of

the composites is very important.

The purpose of this paper is to describe one example of modelling of the effective

density, effective specific heat and effective thermal conductivity tensor of a carbon

woven-fabric/phenolic matrix composite. The strategy is to take into account the

measured properties of each constituent (fibres, matrix, fillers) and the woven-fabric of

the composite. Both analytical and numerical approaches are described.

The measured data used in the different models and the computation results are

presented. Then the difference between these results and the experimental data on the

composites is discussed.

2. EXPERIMENTAL DATA FOR THE COMPOSITE AND ITS

CONSTITUENTS

2.1. Morphological characteristics of the composite material

The material under consideration is made from based rayon carbon fibres (Fig. 1,

medium diameter: d=12 µm ; volumetric fraction: αf,C=0.42 ) and phenolic resin matrix.

Carbon loads (volumetric fraction: αl,C=0.06) are imbedded into the inter-yarn matrix,

but not into the intra-yarn matrix. The porosity (ε=0.02) is uniformly distributed into the

material. The yarns, identical for chain and weft directions (720 fibres per yarn,

volumetric fraction of fibres into the yarn : αf,Y=0.6), are woven in order to make plies



of satin 8/3 (Fig. 2). These plies are then put on each other, without disorientation, to

constitute the stratified composite.

2.2. Thermophysical properties of the constituents

The density of the fibres, the resin, and the loads: ρf=1800 kg.m-3, ρr=1300 kg.m-3 and

ρl=2200 kg.m-3, are measured by Helium pycnometry (commercial apparatus :

Accupyc 1330, Micromeritics) with an uncertainty lower than 3 %. The thermal

conductivities (longitudinal: λf,L=6 W.m-1.K-1, and transverse: λf,T=1.6 W.m-1.K-1) of the

fibres are obtained from thermal diffusivity measurements, at room temperature, by a

photothermal microscopy method [1]. These very difficult measurements are performed

with an estimated uncertainty of 20 %. The thermal conductivity of the resin,

λr=0.4 W.m-1.K-1, is also determined from diffusivity measurements realised on a bulk

sample by the flash method [2]. The thermal conductivity of the loads,

λl=100 W.m-1.K-1, is equally determined from diffusivity measurements on loaded

matrix samples at various concentrations. These measurements are performed with a

large uncertainty of 20 %. Finally, the specific heat of carbon fibres, phenolic resin and

carbon loads are obtained by differential scanning calorimetry (commercial apparatus :

DSC, Setaram) with an estimated uncertainty of 10 % : cf=750 J.kg-1.K-1,

cl=1050 J.kg-1.K-1, cr=600 J.kg-1.K-1.

2.3. Thermophysical properties of the composite material

The thermophysical properties of the composite are determined with identical

techniques. The density, ρC=1490 kg.m-3 is measured with an uncertainty of 3 %. The

thermal conductivities, λC,//=1.81 W.m-1.K-1 in the parallel direction and

λC,⊥=1.16 W.m-1.K-1 in the perpendicular direction, are determined from diffusivity



measurements with an uncertainty of 10%. Finally, the specific heat, cC=900 J.kg-1.K-1

is measured by DSC with an uncertainty of 10%.

3. ANALYTICAL MODEL FOR THE THERMOPHYSICAL EFFECTIVE

PROPERTIES

3.1. Volumetric fractions

The volumetric fraction of the fibres into the yarns, αf,Y=0.6, is obtained by analysis of

yarn cross-section photographs. Consequently, the volumetric fraction of the resin into

the yarns is simply determined by: 40.01 Y,fY,r =α−=α . The volumetric fraction of the

loads into the matrix is also determined using algebrical relations between the

volumetric fractions of all the constituents :
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or numerically: 21.0M,l =α . Consequently, the volumetric fraction of the resin into the

loaded matrix is simply determined by: 79.01 M,lM,r =α−=α , the volumetric fraction of

the resin into the composite by: 50.01 C,lC,fC,r =ε−α−α−=α , the volumetric fraction

of the yarns into the composite by: 70.0Y,fC,fC,Y =αα=α , and the volumetric fraction

of the loaded matrix into the composite by: 28.01 C,YC,M =ε−α−=α .

3.2. Effective density of the composite

The effective density of a material constituted by N constituents of volumetric fraction

αi is given by: ∑
=

ρα=ρ
N

1i
ii . Using this definition to determine the effective density of

the yarns and the loaded matrix, the effective density of the composite is given by:
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or numerically: 3
C m.kg1538 −=ρ .

3.3. Effective specific heat of the composite

The effective specific heat of a material constituted by N constituents of volumetric

fraction αi is given by: ∑∑
==

ραρα=
N
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N
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iii cc . Using this definition to determine the

effective specific heat of the yarns and the loaded matrix, the effective specific heat of

the composite is given by :
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or numerically: 11
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4. NUMERICAL MODEL FOR THE EFFECTIVE THERMAL CONDUCTIVTY

TENSOR

4.1. Effective longitudinal and transverse conductivities of the yarns

The fibres being aligned in the yarns, their effective longitudinal conductivity is simply

determined by a parallel model :

rY,rL,fY,fL,Y λα+λα=λ

or numerically: 11
L,Y K.m.W76.3 −−=λ . The effective transverse conductivity can be

determined by different methods. A frame of this property is given by the Hashin-

Striktman model [3]: 11
T,Y K.m.W98.085.0 −−<λ< , whereas Rayleigh [4] and

Bruggeman [5] models can also be used to provide approximate values, respectively:

11
T,Y K.m.W85.0 −−=λ  and 11

T,Y K.m.W89.0 −−=λ . Moreover, the cross-section

photographs used to determine the volumetric fraction of the fibres into the yarns can be

used to compute their effective transverse conductivity by a direct method. In this



method, a « hot » temperature TH=1 is imposed on one boundary of the medium, a

« cold » temperature TC=0 is imposed on the opposite boundary, and an isolation

condition is imposed on both other boundaries (Fig. 3), in order to compute the

temperature field in the material and to deduce the effective conductivity by the

relation:

CH TT
e
−
Φ

=λ

where Φ  represents the heat flow and e the distance between imposed temperature

boundaries. Using this method, the transverse conductivity of the yarn can be

evaluated : 11
T,Y K.m.W89.0 −−=λ . Finally, the direct method can also be applied on

regular arrays of cylinders (Fig. 4). These computations lead for square array to:

11
T,Y K.m.W86.0 −−=λ  and for hexagonal array to: 11

T,Y K.m.W85.0 −−=λ . All the

values computed for the effective transverse conductivity of the yarns are very close.

For its simplicity, the Bruggeman model has been chosen to calculate T,Yλ  :
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This relation leads to : 11
T,Y K.m.W89.0 −−=λ .

4.2. Effective conductivity of the loaded matrix

The volumetric fraction of loads being relatively low ( 21.0M,l =α ), the effective

conductivity of the loaded matrix can be determined by the Maxwell-Eucken model [7]

with a good approximation :
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This relation leads to : 11
M K.m.W72.0 −−=λ .

4.3. Effective thermal conductivity tensor of the composite

The calculation of the effective thermal conductivity of the composite is realised in two

steps. At first, the material is supposed to be non porous. So, the volumetric fraction of

yarn in the composite becomes: 71.0)1(C,YC,Y =ε−α=α . The conductivity tensor is

determined by the direct method applied on a periodic pattern of the ply (Fig. 5). The

morphology (yarn cross-section and yarn spacing) of the latest is determined in order to

represent the real material and to correspond with the volumetric fraction of the yarns

into the composite. The thermal problem is solved by the finite element method

(Software CAST3M, CEA, France). The temperature difference TH-TC is successively

applied along the three directions. From these three numerical experiments, the effective

conductivity tensor of the composite is computed by the relation [8]:

j

i
j,i

xT ∂∂

Φ
=λ

where iΦ  represents the mean heat flow parallel to the xi direction, and jxT ∂∂  the

mean temperature gradient in the xj direction.

Finally, the material is supposed to be porous. The porosity being low ( 02.0=ε ), the

Maxwell model [9] provides a good approximation of the effective composite

conductivities:
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These relations lead to : 11
//,C K.m.W78.1 −−=λ  and 11

//,C K.m.W81.0 −−=λ .

5. ANALYTICAL MODEL FOR THE EFFECTIVE THERMAL

CONDUCTIVITY TENSOR

The model developed at the previous paragraph uses analytical relations to compute the

effective conductivities of the yarns and the loaded matrix, and numerical relations to

compute the effective conductivity tensor of the composite. The objective of this

paragraph is to propose approximate analytical models to compute the effective

conductivity tensor of the composite.

5.1. Effective conductivity in the direction parallel to ply

At first, the material is supposed to be non porous. The ply is decomposed into two

parts: one containing the yarns parallel to the chain direction, and the other containing

the yarns parallel to the weft direction. The thermal conductivity of the first part, in the

direction parallel to the chain yarns, is called λ1, the one of the second part is called λ2.

The conductivity λ1 can be evaluated by a parallel model:

MC,YL,YC,Y1 )1( λα−+λα=λ

whereas the conductivity λ2 can be evaluated by a serial model:

T,FC,YMC,Y

T,Yr
2 )1( λα−+λα

λλ
=λ

The association of both parts in a parallel scheme provides the effective conductivity of

the non porous composite material:
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Then, using the Maxwell model [9], the effective conductivity of the porous composite

material is given by:
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These relations lead to : 11
//,C K.m.W82.1 −−=λ

5.2. Effective conductivity in the direction perpendicular to ply

At the beginning, the material is again supposed to be non porous. The ply is

decomposed into two parts: one containing the yarns parallel to the chain direction, and

the other containing the yarns parallel to the weft direction. Considered in the direction

perpendicular to the ply, both parts have the same conductivity: ⊥λ ,C , which can be

evaluated by a parallel model:

MC,YT,YC,Y,C )1( λα−+λα=λ ⊥

Then, using the Maxwell model [9], the effective conductivity of the porous composite

material is given by:

[ ]MC,YT,YC,Y//,C )1(
2
1

λα−+λα
ε+
ε−

=λ

These relations lead to : 11
//,C K.m.W82.0 −−=λ .

6. DISCUSSION

The data of the problem (morphological characteristics and properties of the composite

materials) are indicated with associated uncertainties in the first paragraph. These

uncertainties on the data lead to uncertainties on the results. For each calculated

property, both lower and upper values are computed in order to determine mean value

and uncertainty range (Tab. I). The bounds of the range are calculated for a



minimisation or a maximisation of the property value due to data uncertainties. For

example, a lower value of the composite density is obtain for lower values of

constituent densities and volumetric fractions, and higher value of porosity. As a

consequence, the mean value of the uncertainty range may be a bit different from the

nominal value calculated in the previous paragraph.

The mean value calculated for the density is a good estimation of the measured value.

Nevertheless, due to the relative errors accumulation, the uncertainty attached to this

result is twice the measured one. The mean value calculated for the specific heat is also

a good estimation of the measured value, with a similar uncertainty. For the effective

conductivity parallel to ply, the three mean values are similar; the analytical model

value being very close to the measured value. Once again, the uncertainties attached to

the numerical results are twice the measured one.

Finally, for the effective conductivity perpendicular to ply, both mean numerical results

are close together but are also lower than the measured value. This difference indicates

that the modelled material is less conductor than the real material. In both analytical and

numerical models, as in the real material, the effective longitudinal conductivity of the

yarn has a very little influence on the effective conductivity perpendicular to the ply: the

periodic pattern indicates a few intertwine between chain and weft yarns. This

behaviour is also observed in the mechanical studies of composite materials [10]. So,

the effective conductivity perpendicular to the ply mainly depends on the effective

transverse conductivity of the yarns, on the effective conductivity of the loaded matrix

and on the thermal contact between these elements. In both models, the thermal contact

between yarns and loaded matrix is supposed to be perfect. So, it cannot limit the heat

transmission across the material. The relatively few volumetric fraction of the loads in



the matrix involves an increase of the resin thermal conductivity but the effective

conductivity obtained (λM=0.72 W.m-1.K-1) may not exceed 0.8-0.9 W.m-1.K-1. As a

consequence, the difference observed between calculated and measured values of λC,⊥ is

mainly attributed to a lower transverse effective conductivity of yarns

(λY,T=0.89 W.m-1.K-1). This conductivity is calculated with six different models

(paragraph 4.1) which provide similar numerical values (from 0.85 to 0.89 W.m-1.K-1).

The thermal conductivity of the resin and the volumetric fraction of fibres into the yarns

being better known than the thermal properties of the fibre, it may be concluded that the

transverse conductivity of the fibre is probably lower than its true value.

7. CONCLUSION

Both analytical and numerical models have been developed in order to compute

effective density, effective specific heat and effective thermal conductivity tensor of a

composite material. These models were used to calculate the thermophysical properties

of a satin 8/3 stratified composite. A good agreement was obtained for all the predicted

properties except the effective conductivity in the perpendicular to ply direction. A

discussion has then showed that the difference observed between calculated and

measured values may be mainly attributed to a lower transverse conductivity of the

yarns or, consequently, of the fibres. This problem will be studied by the thermal

characterisation of impregnated yarns, in a future work.
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Table I. Numerical results with absolute uncertainties

Effective property
of the composite material Measurement Numerical model Analytical model

density, ρC (kg.m-3) 1490 ± 45 - 1510 ± 89

specific heat, cC (J.kg-1.K-1) 900 ± 90 - 872 ± 105

conductivity parallel to ply,
λC,// (W.m-1.K-1)

1.81 ± 0.18 1.78 ± 0.38 1.82 ± 0.39

conductivity perpendicular to
ply, λC,⊥ (W.m-1.K-1)

1.16 ± 0.12 0.81 ± 0.13 0.81 ± 0.13



Figure Captions

Fig. 1. Rayon-based carbon fibre.

Fig. 2. Composite material under consideration in this work. Chain yarns cross-sections

and weft yarns in horizontal direction.

Fig. 3. Determination of the effective transverse conductivity of the yarns by direct

method using yarn cross-section photographs.

Fig. 4. Determination of the effective transverse conductivity of the yarns by direct

method using regular arrays of cylinders.

Fig. 5. Determination of the effective conductivity tensor of the composite by direct

method applied on one periodic pattern of the ply.
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